ETH-urich

Week 7 - MapReduce

Aljaz Medié

Plan for today

Exercise Sheet Review & Questions
Quiz
MapReduce overview & examples

B Dh -~

Old Exam Questions

E'HZUI’iCh D-INFK - Big Data HS 2025

5.10.2025

Exercise Sheet Review 6 - Task 2.1

ma xmlns:xs="http://www.w3.0rg/2001/XMLSchema">
ement HaMP:”PaU}ch“c”

Document 1

Doc1-4

happiness xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:noNamespaceSchemalLocation="Schema.xsd"/>

Doc2-1,2

s xmlns:xsi="http://www.w3.0rg/2001/XMLSc
:noNamespaceSchemalocation="Schema.xsd">

th/>

Document 2

hema-instance"

<fami
</happiness>

Doc 3-3

s xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:noNamespaceSchemalLocation="Schema.xsd">
3.141562
</happiness>

Document 3

Doc4-1,2,5

xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-
XS 1:noNamespaceSchencLocatlon:”Sc!cha.Asd“>
: 1th value="100"/>

Document 4

happiness instance"

Doc5-2

<happiness xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:noNamespaceSchemalLocation="Schema.xsd">

Document 5

But perhaps everybody defines it differently...
</happiness>

ETH:zirich

D-INFK - Big Data HS 2025

t name="health">

ement name="friends"/> <xs*scher
ent name="family"/>

ype>

ibute name="value" type="xs:integer" use="required"/>

ox T
|

1la xmlns:xs="http://www.w3
:Xs:element

schema>

3

xmlns:xs="htt
nent name="ha

5 :complexTyj

Lement name="health"/
ment name="friends"/>

p-: //Uﬂh“ﬂ”

ppiness">

org/2001/XMLSchema">

schema xmlns:xs="http://www.

ient name="family"/>

ema xmlns:xs="http:/

/www.w3.0rg/2001/XMLSchema">

lement name="happiness">

complexType mix

(s:element

ed="true">

name="health"/>
name="friends" />
name="family"/>

name="happiness" type="xs

org/2001/XMLSchema">
:decimal” />

w3.org/2001/XMLSchema"
lement ncme-”rap|1nc<°”h

5.10.2025

QUIZ

Which of the following components belong to the classic Hadoop MapReduce v1 architecture?
JobTracker; TaskTracker; NameNode; DataNode; YARN ResourceManager

JobTracker, TaskTracker
How are jobs, splits, tasks and slots related?
Each MapReduce job is divided into splits; each split is processed by a task; and each task runs in a

slot.

What are the three main phases of a MapReduce job?
Map, Shuffle, Reduce

ETH:urich D-INFK - Big Data HS 2025 5.10.2025

QUIZ

MapReduce can only process key-value pairs.

One of the optimizations in MapReduce is, that reduce tasks begin emitting final output before all map

tasks have completed.

False. (We have to wait for the last map task to be done, and then shuffle, because a map task can

influence any of the reduce tasks.)

MapReduce requires that the input data reside in HDFS.
False. (MapReduce can read input from several places e.g., cloud object storage like S3, HDFS,

wide-column stores, etc.)

ETH:urich D-INFK - Big Data HS 2025 5.10.2025

QUIZ

In MapReduce, the intermediate , and output values are collections of key—value pairs, and their key/value
types must be identical.
False. (They are all key—values, but the types do not need to match across input, intermediate, and

output; it's only common (not required) for intermediate and output types to be the same.)

Map and reduce tasks can both generate any number of key-value pairs (including zero).

A key—value pair cannot be split across two input splits during splitting, but it can be misaligned with the

underlying HDFS Blocks.

ETH:urich D-INFK - Big Data HS 2025 5.10.2025 6

QUIZ

A combine and map functions are guaranteed to run exactly once each per map task.
False. (Combine function may run zero or multiple times (e.qg., spilling, merging), but there is no

guarantee it will run at all.)

Combine task runs after Map task and before Reduce task.

False. (There is no combine task! Just combine function.)

During shuffle, pairs with the same key may be sent to different reduce partitions for load balancing.

False. (Partitioning ensures all pairs with the same key go to the same reduce-side partition.)

ETH:urich D-INFK - Big Data HS 2025 5.10.2025

QUIZ

A map task invokes the map function in parallel over the records of its spilit.

False. (Calls of the map function within a single task are sequential.)

A reduce slot can execute multiple reduce tasks concurrently.
False. (One reduce slot handles one reduce task at a time, though it can process multiple tasks over

time.

If a running map task fails, the entire MapReduce job immediately fails and stops.
False. (MapReduce is fault-tolerant: if a task fails, the JobTracker will reschedule and rerun that task

on another node, so the job can still complete.)

ETH:urich D-INFK - Big Data HS 2025 5.10.2025

QUIZ

The architecture in MapReduce is decentralized.

False. (The architecture is distributed, but still centralized - it has a master/worker architecture.)

It's preferable for MapReduce to produce many small files rather than one big one, for practical reasons.

Within a map or reduce phase, parallelism occurs between the slots.

ETH:urich D-INFK - Big Data HS 2025 5.10.2025

QUIZ

In MapReduce v1, the slot is either declared reduce or map, and cannot change its purpose during the job

run, which makes a part of the cluster unused at all stages of MapReduce.

Which properties does a combine function need to have?

It has to be associative and commutative. If this is true for the reduce function, and the key-value

types match, we can usually just reuse reduce function.

ETH:urich D-INFK - Big Data HS 2025 5.10.2025 10

MapReduce

Ryt | e M ap keyll | value
key! | value
key IV | value @
e Ma P keylll | value g;
key type 1 -> value type 1 key!l | value ‘%
key V value
Ma pper Map Map Map Map Map Map ! key3 | value Ma o i
key type A -> value type A key Il | value

key | value

key | value Red u Ce key | value

", -

u - — 3 key | value :

Reduce g
Reducer -I key Il value é
key Il | value Red uce keyll | value g

key type A -> value type A keyll | vake

key Il value

key Il value Red u Ce key Il value
key Il value

ETH:urich D-INFK - Big Data HS 2025 5.10.2025 11

MapReduce - Architecture

- Centralized, distributed architecture.

Slot | Task Slot Task
. I (M) (M) X ap (M) (M)
- We benefit from building on top of HDFS.
Slot Task Slot Task
(R) (R) H=F due (M) (M)
Namenode
+
JobTracker Slot Task Slot | Task
(M) (M) E* o (R) (R)
Logical -
O i O = o o Laval Split
= . L L = L (Ma Reduce)
- I - B o M P
Datanode Datanode Datanode Datanode Datanode Datanode Record (key/value pair)
+ + + + - B
TaskTracker TaskTracker TaskTracker TaskTracker TaskTracker TaskTracker
Physical
Level Block
(HDFS)

Impedance mismatch

ETH:urich D-INFK - Big Data HS 2025 5.10.2025 12

Let’'s Write a Combine function!

def map(key, value):

emit(key, value)

def combine(key, values[]): def combine(key, values[]):

emit(key, sum(values))

def reduce(key, values[]):

emit(key, sum(values))

ETH:urich D-INFK - Big Data HS 2025 5.10.2025 13

Let’'s Write another Combine function!

def map(key, value):
emit(key, (value, 1))

def combine(key, values[]):
sum = O
count = @
for (val i, count_i) in values:
sum += val i

def combine(key, values[]):

def reduce(key, values[]): " £ 1
count += count_ i

sum = @ emit(key, (sum, count))

count = ©

for (val i, count_i) in values:
sum += val i
count += count_i

emit(key, sum/count)

ETH:urich D-INFK - Big Data HS 2025 5.10.2025 14

HS23 Q34

(A) Finds the range (difference between max and min) for values of each key.
(B) Groups values by key and sorts them in descending order.

(C) Identifies keys that have values summing to over a specified threshold.

(D) Compares adjacent values for each key and counts the number of increases.

def reduce(key, values):
values.sort(reverse=True) E3
return values

def reduce(key, values):
count = @ [)
for i in range(1, len(values)):
if values[i] > values[i - 1]:
count += 1
return count

def reduce(key, values): ' A
return max(values) - min(values)‘

def reduce(key, values):
if sum(values) > threshold: C
return key
return None

ETH:urich D-INFK - Big Data HS 2025 5.10.2025 15

HS24 Q31

We run a MapReduce job on top of an input dataset:
- whose keys are pairs of date and location, such as ("2025-01-01", "Zurich");
- whose values are non-negative integers, which indicate the number of houses sold on that day and at the given place.

The code is given below:

map(key, value):
if key.date >= "2024-01-01":
emit(("date", key.date), value)
emit(("place", key.place), value)

reduce(key, values): True False

if key.@ == “date":

emit(key.1l, sum(values)) False Each reduce task will either only process keys that contain a date, or only keys that contain a place.
else: (task != function call)

count = @ False The reduce function could also be used as a combine function.

for value in values: (wrong.type)

if value > 0: True The code computes for each day, how many houses have been sold since the start of 2024, and for each
count += 1 place, on how many days a house was sold since the start of 2024.

emit(key.1, count)
True If there are many input (day, place) tuples with zero houses sold, the code could be made more efficient

by only emitting from the map function when the value is strictly larger than 0.

ETH:urich D-INFK - Big Data HS 2025 5.10.2025 16

HS23 Q35

True False

F Scenario: In a graph represented as a list of edges, a MapReduce job is configured to find the degree of
each vertex (i.e., the number of edges connected to each vertex). The map function emits each vertex in an
edge with a count of 1. The reduce function sums these counts for each vertex.

Statement: This MapReduce job requires a secondary sorting mechanism in the reduce phase to correctly
calculate the degree of each vertex.

() Scenario: Given a large dataset of customer transactions, a MapReduce job is designed to calculate the
total expenditure of each customer. The map function emits key-value pairs where the key is the customer
ID and the value is the transaction amount. The reduce function sums up all the values for each key.

Statement: This MapReduce job can benefit from using a combine function to reduce the amount of data
transferred across the network.

ETH:urich D-INFK - Big Data HS 2025 5.10.2025

17

HS23 Q35

T Scenario: A MapReduce job is used for text analysis, where the goal is to count the total number of
occurrences of each word in a large collection of documents. The map function emits each word as a key
and a count of 1 as the value. The reduce function sums these counts for each word.

Statement: We could adapt the job to compute the number of occurrences of each word per document
("document frequency") by modifying the map function so that it emits composite keys consisting of the
document ID and the word.

T Scenario: A MapReduce job is implemented to find the minimum and maximum values from a large set of
numerical data. The map function processes chunks of data and emits two key-value pairs for each chunk:
one for the minimum value and one for the maximum value. The reduce function then finds the global
minimum and maximum from these pairs.

Statement: The reduce function in this job is idempotent, meaning that applying it multiple times does not
change the outcome beyond the initial application.

ETH:urich D-INFK - Big Data HS 2025 5.10.2025

ETH-urich

See you next week!

[=]

=13
ORAD

o

[=]

Aljaz Medic
amedic@ethz.ch

-
[w]

Suggestions

mll

